

HEAVY LIFT TRUCKS 28 – 50 TONNESTECHNICAL INFORMATION KALMAR DCF280-500, DIESEL

INTRODUCTION

Welcome to a new world of heavy-duty handling

The old trendsetter of the world, the Kalmar heavy-duty lift truck has, in our new series, got so much more than a simple facelift. We talk about an entirely new machine based on long experience and smart utilisation of the lastest technology. A machine loaded with customer value.

The heavy-duty lift trucks have been developed for a broad spectrum of heavy handling applications. Very strong emphasis has been put on providing our customers, not only a machine, but productivity and cost efficiency.

This is a machine generation which reflects the overall increased demands and requirements among our customers all over the world.

The Two basic elements in heavy-duty handling.

Based on our experience from more than 10.000 predecessors operating worldwide, the new Kalmar has gone through an aggressive product development, where we have scrutinised and improved every detail, component and system.

We have learnt that demanding customers have two main priorities when it comes to machine choice and decision – productivity and cost efficiency. All other aspects are there to fulfil these priorities and add even more customer value.

When appropriate simple technical solutions were available we applied them, and when the need was for more sophisticated systems we installed them to increase your productivity and cost efficiency.

And there is of course, exciting new leveraging technology under the skin in order to provide the best everyday performance and availability.

Finally, the technical optimisation of the new Kalmar series means that you will get the best technology available but still have the feeling of having a reliable, simple, safe and hard working machine.

This is what it's all about. But of course you have to add "at the lowest operational cost possible".

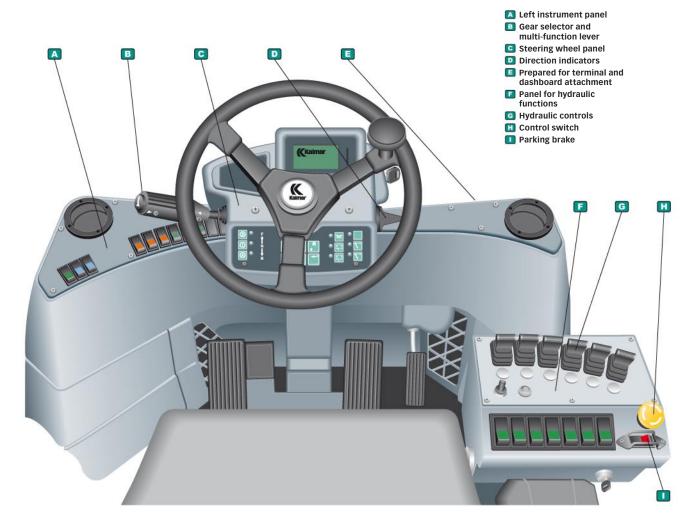
ERGONOMICS

Made for top performance in heavy-duty handling

To obtain the maximum out of your investment, you can never underestimate the importance of the drivers' working environment. High productivity requires full driver concentration and efficiency to keep up handling speed, but also to avoid accidents causing injuries and costly damages.

This is what ergonomics is all about. Being comfortable and aware.

The driver environment in Kalmar Heavy Lift Trucks is the efficient Spirit Delta high visibility cabin; appreciated by professional drivers, proven on thousands of Kalmar medium heavy lift trucks and container handlers all over the world. We focus on four important ergonomic areas:


- Operation
- Visibility
- Sound and vibrations
- Climate

The result is a cabin where everything is optimised to improve driver performance.

Consider this:

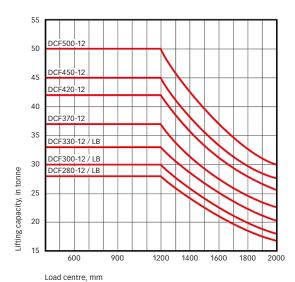
- Individually adjustable controls, steering wheel and seat.
- Intuitively positioned instruments.
- · Switches and buttons with lights.
- · Comfort pedals.

- Electronic accelerator.
- · Central operation/warning display.
- Separately suspended and isolated cabin
- · Shock absorption to minimise vibrations.
- Maximum sound level inside is 70 dB (A).
- Generous interior dimensions and floor space.
- Optimised visibility 360° all around.
- Electronically controlled heating/ ventilation.
- · Filters for fresh air and recirculation.
- High performance air conditioning system, optional.
- Pollen filter, optional.

CAPACITY AND DIMENSIONS

Match your specific handling requirements

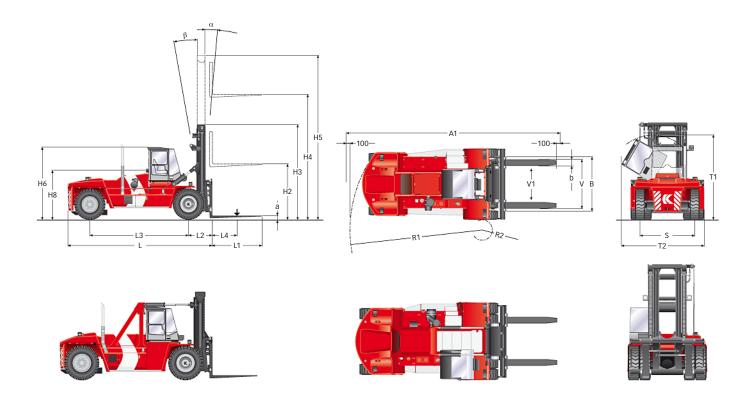
When we designed the new Kalmar series we already knew the detailed status of all the main alternatives on the market. Hence, we designed a machine which meets or exceeds the specifications of the others - on the spec sheet and in reality.


You can choose between several basic models, each optimised according to lifting capacity - stability - overall dimensions – weight – and driving performance.

Six models covering loads between 28 - 50 tonnes, specified for a comprehensive range of lifting heights at 1200 mm load centre, including the side-shift/fork positioning carriage. This means that you may easily find the right machine or combination of machines to suit your operational requirements.

The design of the chassis, mast and carriage has resulted in machines with very good dimensional-, stability- and operational characteristics.

In spite of its size and capacity the machines have short turning radius. Together with the optimised visibility and good manoeuvrability, it saves site space and makes the machine a smooth operator in confined spaces. The counterweight and lifting height requirements have been matched with a modern chassis to keep down the overall weight but with no sacrifice in stability.


Additionally, we have ensured that every single detail, component and system have been selected and manufactured to provide the highest possible reliability.

DCF280 $^{\mbox{\tiny (1)}}\mbox{-}500 \,^{\mbox{\tiny (2)}}$ models: Full lifting capacity up to $5000 \,^{\mbox{\tiny (1)}}$ /

10.000⁽²⁾ mm lift height with duplex/duplex freelift masts and integrated sideshift/fork positioning carriage.

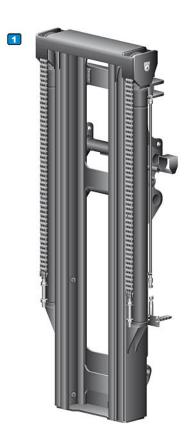
D	imensions		·						
Lifting	Lift capacity	Rated		kg					
≝		Load centre	L4	mm					
	Truck	Length, without forks	L	mm					
		Width	В	mm					
		Height, basic machine	H6	mm					
		Seat height	H8	mm					
		Distance between centre of front axle – front face of fork arm	L2	mm					
		Wheelbase	L3	mm					
		Track (c-c), front – rear	S	mm					
		Turning radius, outer	R1	mm					
		Turning radius, inner	R2	mm					
		Ground clearance, min.		mm					
ons		Max. height when tilting cab	T1	mm					
Dimensions		Max. width when tilting cab	T2	mm					
Ë		Min. aisle width for 90° stacking with forks	A1	mm					
-	Standard duplex mast	Lifting height	H4	mm					
		Mast height, min.	H3	mm					
		Mast height, max.	H5	mm					
		Mast tilting, forwards – backwards	α – β	0					
		Ground clearance, min.		mm					
	Forks	Width	b	mm					
		Thickness	a	mm					
		Length of fork arm	1	mm					
		Width across fork arms, max. – min.	V	mm					
		Sideshift ± at width across fork arms	V1 – V	mm					
	Service weight			kg					
ı	Axle load front	Unloaded		kg					
Weight		At rated load		kg					
>	Axle load back	Unloaded		kg					
		At rated load		kg					
윧	Wheels/tyres	Туре							
teeri		Dimensions, front – rear		inch					
and s		Number of wheels, front – rear (*driven)							
kes		Pressure		Мра					
Wheels, brakes and steering	Steering system	Type – manoeuvring							
heel	Service brake system	Type – affected wheels							
>	Parking brake system	Type – affected wheels							
١,	Hydraulic pressure	Max.		Мра					
Misc.	Hydraulic fluid volume			1					
_	Fuel volume			1					

DCF280-12		DCF30	0-12	DCF3	330-12	DCF370-12	DCF420-12	DCF450-12	DCF500-12
•	LB	•	LB	•	LB	DCF370-12	DCF420-12	DCF430-12	DCF300-12
28000		3000	00	33	000	37000	42000	45000	50000
1200		120	0	1200		1200	1200	1200	1200
6675		6675		69	925	7345	7845	7950	8550
3410		341	0	34	110	4150	4150	4150	4150
3650 3	8415	3650	3415	3650	3415	3725	3725	3825	3825
2300		230	10	23	300	2350	2350	2450	2450
1125		112	5	11	125	1295	1295	1400	1440
4500		450	10	47	750	5000	5500	5500	6000
2540 – 2440)	2540 –	2440	2540	- 2440	3030 - 2625	3030 – 2625	3030 – 2815	3030 - 2815
6600		660	10	66	500	6900	7400	8150	8650
950		950	0	9	50	1000	1100	1100	1200
300		300	0	3	00	300	300	300	300
- 3	800	-	3800	-	3800	-	-	-	-
- 3	850	-	3850	-	3850	-	-	-	-
10325		1032	25	10	325	10795	11295	12100	12600
5000		500	10	50	000	5000	5000	5000	5000
4520		452	.0	45	520	5050	5050	5050	5050
6770		677	0	67	770	7550	7550	7550	7550
5 – 10		5 – 1	10	5 -	- 10	5 – 10	5 – 10	5 – 10	5 – 10
-		-			_	-	-	-	-
300		300	0	3	00	300	300	300	300
110		110)	1	10	135	135	135	145
2400		240	10	24	100	2400	2400	2400	2400
2750 – 1550	1	2750 -	1550	2750	- 1550	2750 – 1950	2750 – 1950	2750 – 1950	2700 – 1900
300 – 2150		300 – 2	2150	300 -	- 2150	200 – 2350	200 – 2350	200 – 2350	200 – 2300
40600		4060	00	40	600	49300	51900	54800	61000
19600		1960	00	19	600	25500	27400	27600	33000
69300		6910	00	68	800	81000	88600	93900	105000
21000		2100	00	21	000	23800	24500	27200	28000
4300		450	10	48	300	5300	5500	5900	6000
Pneumatic		Pneum	natic	Pneu	ımatic	Pneumatic	Pneumatic	Pneumatic	Pneumatic
16.00×25 - 16.00	0×25	16.00×25 -	16.00×25	16.00×25	- 16.00×25	18.00×25 - 18.00×25	18.00×25 – 18.00×25	18.00×33 – 18.00×33	18.00×33 - 18.00×33
4* - 2		4* -	- 2	4*	-2	4* - 2	4* - 2	4* - 2	4* - 2
1,0		1,0)	1	,0	1,0	1,0	1,0	1,0
					5	Servo assisted – Steering whe	el		
						Wet disc brakes - Drive whee	I		
						Spring brake – Drive wheel			
17,0		17,0	0	1:	7,0	15,0	17,0	18,0	20,0
600		600	0	6	00	600	600	600	600
400		400	0	4	00	400	400	400	400

LIFTING PERFORMANCE

Versatility provides productivity

The standard lifting equipment of Kalmar is an integrated assembly consisting of a free visibility duplex mast, side-shift/fork positioning carriage and forks, hydraulics and control system. This is to ensure you get a reliable and good running machine with high availability even after long shifts and high load stresses in general cargo handling.


A major objective in the development process has been to combine optimum functionality for the driver together with high performance in lifting and load handling.

The mast and carriage are computer designed and optimised (FEM and Catia V5) which allowed for a decrease in the front axle weight. Together with Kalmar's integrated high capacity carriage it allows you to fully utilise the capabilities of mast tilt, side-shift at full lifting height and full capacity. No compromises.

Full visual contact with the load and attachement, is provided by the Spirit Delta cabin and the open design of the mast and carriage.

Due to the wide range of optional equipment the machines can be equipped with a lifting equipment adapted to almost every application.

M	ast	DC	F280-330 /	LB		DCF370-450)	DCF500		
	Lift- height	Mast	height	Free- lift	Mast height		Free- lift	Mast height		Free- lift
	H4	Min. H3	Max. H5	H2	Min. H3	Max. H5	H2	Min. H3	Max. H5	H2
ard	4000	4020	6020	-	4550	6550	-	5100	7100	-
and	4500	4270	6520	-	4800	7050	-	5350	7600	-
clear view, standard	5000	4520	7020	-	5050	7550	-	5600	8100	-
r vie	5500	4770	7520	-	5300	8050	-	5850	8600	-
clea	6000	5020	8020	-	5550	8550	-	6100	9100	-
Duplex,	6500	5270	8520	-	5800	9050	-	6350	9600	-
	7000	5520	9020	-	6050	9550	-	6600	10100	-
#	4000	4020	6020	2000	4550	6550	2000	-	-	-
clear view, free lift	4500	4270	6520	2250	4800	7050	2250	-	-	-
ew, f	5000	4520	7020	2500	5050	7550	2500	-	-	-
ar vie	5500	4770	7520	2750	5300	8050	2750	-	-	-
, cle	6000	5020	8020	3000	5550	8550	3000	-	-	-
Duplex,	6500	5270	8520	3250	5800	9050	3250	-	-	-
۵	7000	5520	9020	3500	6050	9550	3500	-	-	-

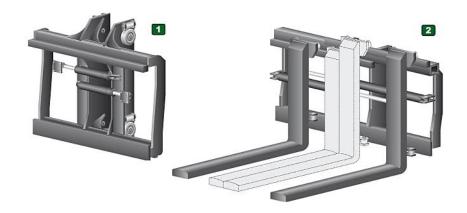
 $\label{thm:control} \textbf{Triplex mast available on request, please contact Product line Heavy Lift Trucks}$

1 Duplex standard mast

The Duplex mast is a well proven design which minimises the concealed angles for the driver.

2 Duplex free-lift mast

The Duplex mast is also available in a Freelift version for certain lifting heights and models, providing full free-lift as well as exceptionally good through visibility.



1 Standard carriage

The standard fork carriage is equipped with manually adjustable steel forks made of high strength steel. The carriage is of free visibility type.

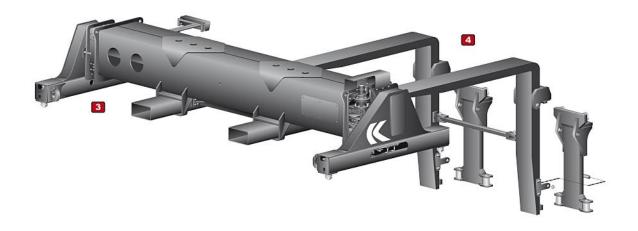
Carriage for steel application

As option the mast will be equipped with Kalmars hydraulically operated carriage of free visibility type. This includes sideshift, individual positioning of forks, levelling. The forks could be positioned against each other to become sort of a flexible coil ram.

1 Fork shaft system

A smooth way to improve handling flexibility is to use the fork shaft system. The system enables the driver to quick and easy change between different carriers or attachments like extra long forks, coil ram, inverted forks etc. The carriage is equipped with a separate shaft holder.

Coil ram


The coil ram is made for intensive handling of heavy coils, is mounted directly on the carriage and supported with a side-shift function.

3 Top-lift attachment

The container top-lift attachment is available in two fixed sizes – 20" and 40". It is used together with either standard forks or inverted forks. The hydraulics for the twistlocks is connected through quick couplings.

Inverted forks

The inverted forks are easily mounted on the fork shaft system. They are used as carrier for the top lift attachments. The inversion also means that the basic lifting height is maintained.

OPERATIONAL PERFORMANCE

The basic set up

A key factor for heavy duty handling productivity is the basic machine set up. Heavy loads and high lifting speed, for example, put critical demands on the engine and hydraulic power support. Fast positioning during the handling cycle requires precise control with tight turning radius, effective and reliable brakes and high engine torque. Fast handling requires good stability, reliable brakes and smooth transmission.

Of course, all the working components and systems have to cope with the most demanding stresses during long shifts and heavy operations everyday.

We have put highest priority on overall technical reliability. Looking at the choice of each component, long running cycle times and how it all comes together. We have incorporated into the Heavy Lift Trucks several major components and systems from our extremely reliable DRF reachstacker. More than 1.000 of these machines have been delivered in the past few years and have proven the durability of the components and systems, and its low running costs.

Chassis

The frame forms the basis of the machine's lifting and manoeuvring characteristics and was designed exclusively for heavy duty operation. The beam construction, along with its width, makes the Heavy Lift Trucks stable, torsion resistant and service-friendly.

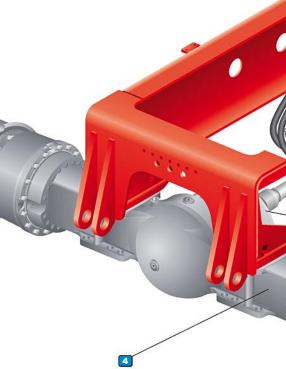
The frame is 3D modulated (Catia V5) and designed (FEM) in order to eliminate critical tensions under various kinds of strain. The mechanically welded chassis has been optimised according to strength, weight and stability.

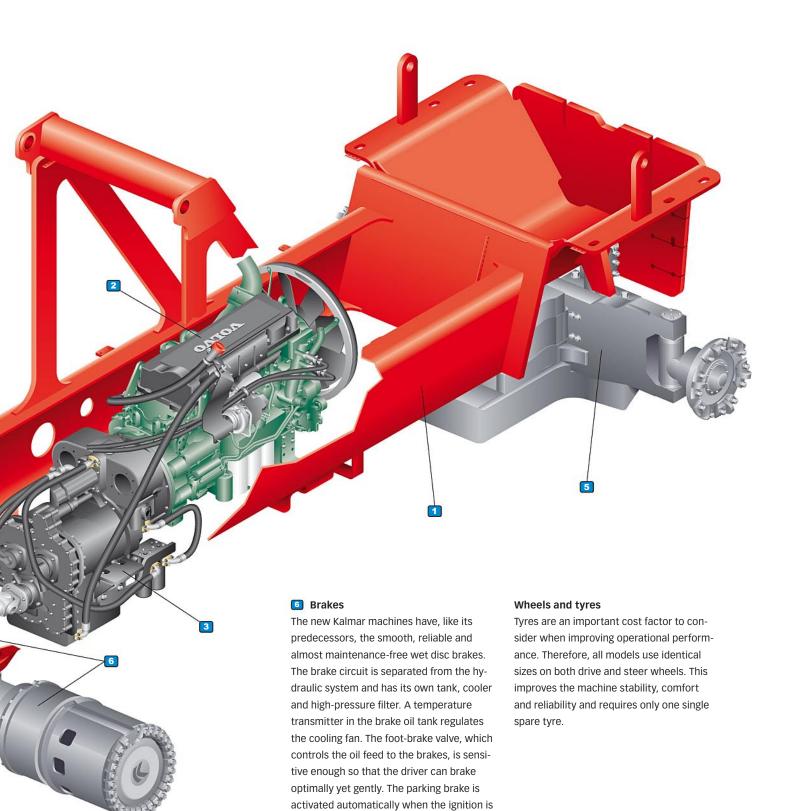
Engine

The Volvo engines provide power for driving and the working hydraulics. The engines are low-emission turbo diesels with fuel injectors and intercoolers. The design of the combustion chambers, along with the precise fuel injection control, ensures more efficient combustion to provide lower emissions with increased torque and power. The engines meet the Tier 3 requirements, and the sound and vibration standards.

The radiator is a 3 chamber design with a single fan to provide cooling for the engine and transmission. The engine cooler's separate expansion chambers are fitted with a level sensor that indicates low coolant level.

3 Transmission


The transmission transfers power from the engine to the hydraulic pumps and drive line. The engine and gearbox control systems work together to find the optimum balance between power and fuel economy at any given time. The transmission system consists of a torque converter and a gearbox. The gearbox is automatic, but can partly be shifted manually.


Drive line

The propeller shaft and drive axle transfer the power from the transmission to the driving wheels. The mountings on the propeller shaft are fitted with cross-flanges for optimum strength. The drive axle gears down in two stages, differential and hub reduction. The engine provides maximum torque at the drive wheels, which spares the transmission.

5 Steering system

The steering axle is built from a single piece of high strength steel, which means fewer parts requiring less maintenance and higher structural integrity. The suspension points on the steering axle utilise a maintenance-free plastic. The hydraulics that feed oil to the steering cylinder are optimised for enhanced driving feel. The orbitrol and the priority valve jointly provide gentle, yet precise, steering movements.

turned off.

DRIVING PERFORMANCE

The basic set up is a key factor for high productivity

Drive trains – DC	E290 220 / LB			Standard	Option			
Dilve trailis - DC	F200-330 / LB			Volvo TAD760VE Dana TE17000	Volvo TAD950VE Dana TE17000	Cummins QSB6,7 Dana TE17000		
Engine	Manufacturer – type designation			Volvo – TAD760VE (Turbo-Intercooler)	Volvo – TAD950VE (Turbo-Intercooler)	Cummins – QSB6,7 (Turbo-Intercooler)		
	Fuel – type of engine			Diesel – 4-stroke	Diesel – 4-stroke	(Turbo-Intercooler) Diesel – 4-stroke 194 – 2200 990 – 1400 6 – 6700 20 Dana – TE17000		
	Rating ISO 3046 – at revs	kW/rp	om	180 – 2200	210 – 1800	194 – 2200		
	Peak torque ISO 3046 – at revs Nm-rpm			1100 – 1500	1275 – 1000-1500	990 – 1400		
	Number of cylinders – displacement	nt	cm ³	6 – 7150	6 – 9400	6 – 6700		
	Fuel consumption, normal driving		l/h	16	20	20		
Gearbox	Manufacturer – type designation			Dana – TE17000	Dana – TE17000	Dana – TE17000		
	Clutch, type	Clutch, type			Torque converter	Torque converter		
2	Gearbox, type			Powershift	Powershift	Powershift		
	Numbers of gears, forward – rever	se		3 – 3	3 – 3	3 – 3		
Alternator	Type – power		W	AC - 1920	AC - 1920	AC - 1920		
Starting battery	Voltage – capacity		V-Ah	2×12 – 140	2×12 – 140	2×12 - 140		
Driving axle	Manufacturer – type			AxleTech – Differential and hub reduction	AxleTech – Differential and hub reduction	AxleTech – Differential and hub reduction		
Noise level	LpAZ (inside*) Sprit Delta		dB(A)	72	72	72		
	LwA (outside**)		dB(A)	-	-	-		

Р	erformance – Volvo TAD760V	/E with Dana 1	TE17000		DCF280-12 / LB	DCF300-12 / LB	DCF330-12 / LB
	Lifting speed	unloaded		m/s	0,35	0,35	0,35
		at 70% of rated load		m/s	0,18	0,18	0,18
	Lowering speed	unloaded		m/s	0,38	0,38	0,38
(I)		at rated load		m/s	0,47	0,47	0,47
anc	Travelling speed, forward – reverse	unloaded		km/h	27,5 – 27,5	27,5 – 27,5	27,5 – 27,5
Ĭ		at rated load		km/h	25,5 - 25,5	25,5 - 25,5	25,5 – 25,5
Performance	Gradeability	Max.	unloaded	%	30	30	30
Ф			at rated load	%	27,5	27,5	27,5
		At 2 km/h	unloaded	%	30	30	30
			at rated load % 19,5 19,5		19,5	19,5	
	Drawbar pull	Max.		kN	209	209	209

Р	erformance – Volvo TAD950V	/E with Dana TE	17000		DCF280-12 / LB	DCF300-12 / LB	DCF330-12 / LB
	Lifting speed	unloaded		m/s	0,35	0,35	0,35
		at 70% of rated load		m/s	0,18	0,18	0,18
	Lowering speed	unloaded		m/s	0,38	0,38	0,38
۵		at rated load		m/s	0,47	0,47	0,47
anci	Travelling speed, forward – reverse	unloaded		km/h	25 – 25	25 – 25	25 – 25
Į		at rated load		km/h	21 – 21	21 – 21	21 – 21
Performance	Gradeability	Max.	unloaded	%	52,5	52,5	52,5
-			at rated load	%	31	31	31
		At 2 km/h	unloaded	%	36,5	36,5	36,5
			at rated load	%	26	26	26
	Drawbar pull	Max.	Max.		230	230	230

Performa	ance – Cummins QSB6	5,7 with Dana 1	E17000		DCF280-12 / LB	DCF300-12 / LB	DCF330-12 / LB
Lifting sp	peed	unloaded		m/s	0,35	0,35	0,35
		at 70% of rated load		m/s	0,18	0,18	0,18
Lowering	g speed	unloaded		m/s	0,38	0,38	0,38
d)		at rated load		m/s	0,47	0,47	0,47
Travelling	ng speed, forward – reverse	unloaded		km/h	27,5 – 27,5	27,5 – 27,5	27,5 – 27,5
Ě		at rated load		km/h	25,5 - 25,5	25,5 - 25,5	25,5 - 25,5
Travelling Gradeab	oility	Max.	unloaded	%	52,5	52,5	52,5
ī.			at rated load	%	27,5	27,5	27,5
		At 2 km/h	unloaded	%	36,5	36,5	36,5
			at rated load	%	19,5	19,5	19,5
Drawbar	r pull	Max.		kN	209	209	209

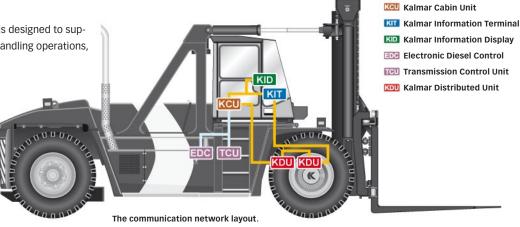
^{*} Noise level according to DIN 45635 part 36 $\,$ ** Noise level according to 2000/14/EC $\,$

Drive trains - DC	F270 F00		Standard on DCF370-420	Standard on DCF450-500 Option on DCF450-500	Option
Drive trains - DC	F370-500		Volvo TAD952VE Dana TE32000	Volvo TAD1250VE Dana TE32000	Cummins QSM11 Dana TE32000
Engine	Manufacturer – type designation		Volvo – TAD952VE (Turbo-Intercooler)	Volvo – TAD1250VE (Turbo-Intercooler)	Cummins – QSM11 (Turbo-Intercooler)
	Fuel – type of engine		Diesel – 4-stroke	Diesel – 4-stroke	Diesel – 4-stroke
	Rating ISO 3046 – at revs	kW/hp-rp	1 252 – 1900	260 – 1600	261 – 2000
	Peak torque ISO 3046 – at revs	Nm-rpm	1735 – 1300	1760 – 1400	1830 – 1100-1400
	Number of cylinders – displaceme	ent ci	n ³ 6 – 9400	6 – 12130	6 – 10800
	Fuel consumption, normal driving	I,	1 20	20	20
Gearbox	Manufacturer – type designation		Dana – TE32000	Dana – TE32000	Dana – TE32000
	Clutch, type		Torque converter	Torque converter	Torque converter
2	Gearbox, type		Powershift	Powershift	Powershift
	Numbers of gears, forward – reve	rse	4 – 4	4 – 4	4 – 4
Alternator	Type – power	١	AC – 1920	AC - 1920	AC - 1920
Starting battery	Voltage – capacity	V-	Ah 2×12 – 140	2×12 - 140	2×12 - 140
Driving axle	Manufacturer – type		AxleTech – Differential and hub reduction	AxleTech – Differential and hub reduction	AxleTech – Differential and hub reduction
Noise level	LpAZ (inside*) Sprit Delta	dB	A) 72	72	72
	LwA (outside**)	dB	A) –	-	-

Р	erformance – Volvo TAD952V	'E with Dana TE	32000		DCF370-12	DCF420-12
	Lifting speed	unloaded		m/s	0,34	0,34
		at rated load*		m/s	0,27	0,27
	Lowering speed	unloaded		m/s	0,22	0,22
l o		at rated load		m/s	0,40	0,40
anc	Travelling speed, forward – reverse	unloaded			24 – 24	24 – 24
Ĭ		at rated load		km/h	20 – 20	19 – 19
Performance	Gradeability	Max.	unloaded	%	35	35
-			at rated load	%	43	39
		At 2 km/h	unloaded	%	35	35
		at rated load		%	28	26
	Drawbar pull	Max.		kN	379	379

Р	erformance – Volvo TAD1250	VE with Dana T	E32000	DCF370-12	DCF420-12	DCF450-12	DCF500-12	
Г	Lifting speed	unloaded		m/s	0,34	0,34	0,34	0,34
		at rated load*		m/s	0,27	0,27	0,27	0,27
	Lowering speed	unloaded		m/s	0,22	0,22	0,22	0,22
a		at rated load		m/s	0,40	0,40	0,40	0,40
эuс	Travelling speed, forward – reverse	unloaded		km/h	27 – 27	27 – 27	27 – 27	27 – 27
Ë		at rated load		km/h	24 – 24	23 – 23	22 – 22	21 – 21
Performance	Gradeability	Max.	unloaded	%	35	35	35	35
Ф			at rated load	%	34	32	31	29
		At 2 km/h	unloaded	%	35	35	35	35
			at rated load	%	31	29	28	26
İ	Drawbar pull	Max.		kN	329	329	329	329

Р	erformance – Cummins QSN	111 with Dana 1	E32000	DCF370-12	DCF420-12	DCF450-12	DCF500-12	
	Lifting speed	Lifting speed unloaded		m/s	0,34	0,34	0,30	0,30
l		at rated load*		m/s	0,27	0,27	0,25	0,25
	Lowering speed	unloaded		m/s	0,22	0,22	0,22	0,22
<u></u>		at rated load		m/s	0,40	0,40	0,40	0,40
Performance	Travelling speed, forward – reverse	unloaded		km/h	24 – 24	24 – 24	27 – 27	25 – 25
Ιĝ		at rated load		km/h	20 – 20	20 – 20	22 – 22	21 – 21
erfc	Gradeability	Max.	unloaded	%	35	35	35	35
4			at rated load	%	43	43	34	33
		At 2 km/h	unloaded	%	35	35	35	35
			at rated load	%	28	28	26	25
	Drawbar pull	Max.		kN	379	379	368	368


INTELLIGENCE

The simple way to reach new levels of utilisation

All vehicles today - cars, highway trucks, wheel-loaders, cranes etc - are constructed with more and more sophisticated components and systems. Each part interacts closely with the others and to reach the full potential requires computer assistance.

The new Kalmar series posses a well proven, thoroughly tested and optimised control system, which supports your driver, mechanics and financial controller. And it is simple to use.

This built-in intelligence is designed to support and leverage your handling operations, not confuse it.

The reliable distributed control system.

Two things are needed for a command initiated by the driver to result in a particular function, or for several functions to work together: power supply and communication.

The power-feed supplies the machine's electrical or electro-hydraulic functions with voltage. The communication system controls and checks that the functions have been activated, waits in standby mode or indicates faults.

Communication

The distributed power-feed and communication network consists of electrical components and a microcomputer-based system for controlling and monitoring the functions.

The most important components in the network are the control units (nodes). They distribute control of the machine's functions. Each node has its own processor. The nodes integrate with each other and all communication; control signals and signal information are sent via data buses.

The nodes transmit their signals in messages on the network. Each message contains several signals and has its own address. Any units that need to know the status of a signal listen out for the address of the signal's message. All the nodes in the network listen to each other.

CAN-bus is a two-wire transfer of data and a definition of a bus type. CAN-bus technology has been chosen because it provides a reliable, robust transfer of data and is difficult to disrupt. CAN-bus loops have been used in Kalmar machines since 1995.

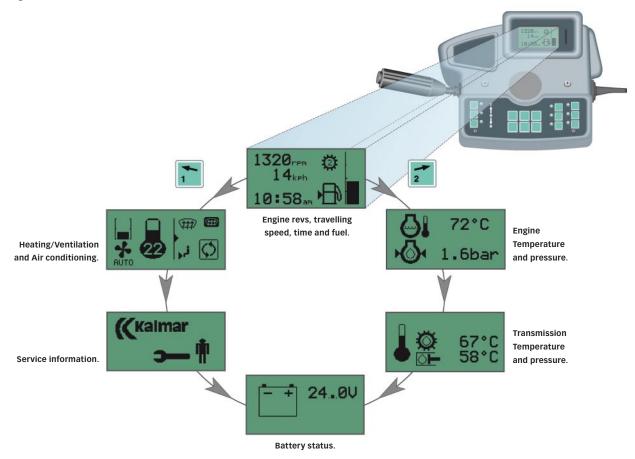
The greatest benefit of using CAN-bus technology is that the amount of cabling can be reduced. All that is needed to establish communication are two data-bearing leads and two leads for feeding the nodes' processors. The network loop for both the CAN-bus and the nodes' processor feed are redundant.

The Kalmar Cabin Unit (KCU) is the control node for the entire network. There are several nodes, called KDUs (Kalmar Distribution Units), in the network. Each node is positioned near to the functions it is designed to deal with.

The Transmission Control Unit (TCU), which is the gearbox node, deals with the gearbox. The unit is connected in a separate CAN-bus loop with the EDC engine node (Engine Diesel Control) and KCU. The engine node controls the fuel injection and receives its control signals from its own transmitters on the engine.

Power supply

Power-feed for the functions differ from the feed required for communication and feeding of the nodes' processors. Each distribution unit (node) in the distributed network is fed voltage from one of the power distribution boxes. The distribution boxes are located inside the cabin and on one side of the frame. The distribution units (nodes) guide power from the distribution box to the required functions based on the instructions in the messages from the communication network.


Control functions - support the driver.

The driver and machine communicate very simple via the Kalmar Information Terminal (KIT) and the Information Display located right in front of the driver in the cabin. The two-way communication – from the driver to the machine and opposite – is handled by the KCU (Kalmar Cabin Unit) which is the control node for the entire network.

Information to the driver comprises alarm warnings, operating details and action-guided information. Messages, status, fault indications etc are presented on the Information Display (KID), while warnings and other monitoring indications are presented to the left.

Messages are only presented when they are relevant to the driver and the operation. The driver can focus on the job instead of checking meters and indicators.

AVAILABILITY

We have made sure your investment becomes profitable

To understand the full potential of your investment requires being aware of the details, features and technical matters in a machine like the new Kalmar.

But when it comes to availability it is critical that it operates constantly and is kept in good condition with an absolute minimum of maintenance and repairs.

Less stops for planned mainenance.

The service intervals have been extended to 500 hours, which means that you don't have to take the machine out of work more than 6 times a year (3.000 hours utilisation).

The DCF is designed for fast daily inspection and preventive maintenance. All checkpoints are easy accessible and concentrated to specific locations. Lubrication free components or central lubrication points have been utilised. The wet disc brake system is practically maintenance free.

The indicator and monitoring support built into our control system make sure that the machine won't be misused or maintained incorrectly. The driver and mechanics will always get indications and guidance in time to avoid unnecessary and costly wear and tear or technical breakdowns. No unwanted stops.

A safe communication network

The control and monitoring system is the new Kalmar control system, but already successfully applied in more than 1.000 Kalmar machines worldwide.

This new reduntant CAN-bus system is proven to be excellent in functionality and reliability. The network of control nodes allows for less wiring and connectors which reduces the number of sources of error. The power-feed for each node and the transfer of control signals are independent of the other nodes, which means the risk of disruption becomes minimal. The redundant design means that there are always two paths to choose to maintain communication, which results in extra safety and reliability.

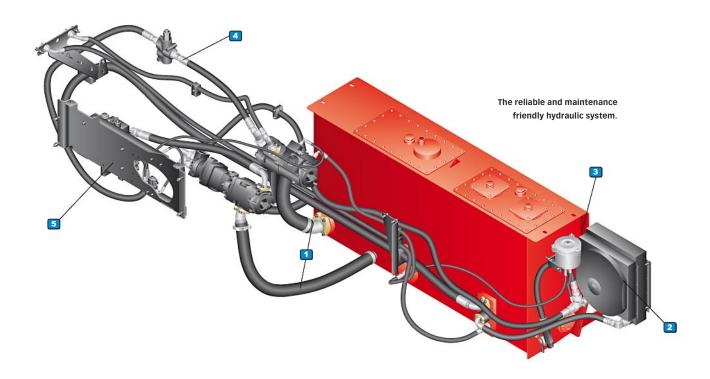
Reliability starts already at the concept stage.

One of the guiding principles in designing the DCF was to minimise the number of potential sources of error. Therefore the machines consist of as few components and moving parts as possible. The functionality and operational reliability is assured by extensive testing.

To increase workplace safety the machine can be fitted with alcohol interlock.

The hydraulic system is critical.

No other part of the machine is working so hard under continuous pressure. To secure the reliability we have minimised the number of hydraulic components and couplings.


To ensure optimum oil pressure and security regardless of the handling operation the hydraulic system is based on three fixed displacement vane pumps – one for the brake system, cooling and filtering, one for working hydraulics and one supporting both steering and working hydraulics.

The distribution of pressure between working hydraulics and steering is done by the priority valve which ensures that the steering always receives enough pressure. The hydraulic oil pump for load handling is disconnected during forward driving, to use the engine power to best effect.

All three pumps interact together, using the same oil tank and filters, which are located inside the tank. The system is equipped with one oil cooler and a separate fan to secure the right oil temperature, to match

the hydraulic brake heat generation as well as feeding the overall system during tough handling cycles.

Oil supply and temperature control is handled through Kalmars distributed control system. All indications are presented when appropriate on the Kalmar Information Display (KID) in the cabin.

Other improving features:

- Large dimensions of hydraulic hoses improves the hose's lifetime (slower flow, less friction and less heating).
- Thermostatic cooling of both the main system and the brake system improves the oil lifetime (temperature control, optimised working temperature).
- 3 High density filter improves the oil lifetime (clean oil).
- ORFS leak proof couplings all around improves reliability (minimises leakage).
- 5 All main hydraulic components at ground level are gathered on a separate plate, bolted to the chassis and therefore simple to remove.

Kalmar global partner

Local presence

Kalmar is a global supplier of heavy materials handling equipment and services for ports, terminals, industry and intermodal handling.

Local presence means that we can support our customers throughout the product's life cycle, wherever they are located.

There are 17 Kalmar sales companies that support dealers and agents in 140 countries around the world.

